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1 Introduction

Bézier paths, as used in practice, consist of multiple segments, each of which
is either a straight-line segment, a quadratic Bézier curve segment, or a cubic
Bézier curve segment. These curves can be represented by the following
expressions:

� p(t) = p0B0,1(t) + p1B1,1(t) for linear segments,

� p(t) = p0B0,2(t) + p1B1,2(t) + p2B2,2(t) for quadratic segments,

� p(t) = p0B0,3(t)+p1B1,3(t)+p2B2,3(t)+p3B3,3(t) for cubic segments,

where p0, p1, p2, and p0 are control points, Bi,n(t) is a Bernstein polynomial
defined by the equation

Bi,n(t) =

(
n
i

)
ti(1− t)n−i,

with p(t) and the control points represented by vectors.
If the X and Y components of p(t) are x(t) and y(t) (with an obvious

generalization to more dimensions), then the distance between two points on
a segment is

d(t1, t2) =
∫ t2

t=t1

√
A(t)2 +B(t)2 dt

where

A(t) =
dx

dt

B(t) =
dy

dt
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These derivatives can be computed by using the relation,

d

dt
Bi,n(t) = n(Bi−1,n−1(t)−Bi,n−1(t))

with B−1,n−1(t) = Bn,n−1(t) = 0. This relation can be used to differentiate x
and y, representing the derivatives as polynomials using a Bézier basis and
the derivatives can then be easily transformed to a monomial basis.

Because A(t) and B(t) are squared, the square root will always be positive
unless A(t) and B(t) share a common root. In addition, A(t) and B(t) can
be at most quadratic polynomials. When A(t) and B(t) share at least one
root, we can write the integral as

d(t1, t2) =
∫ t2

t=t1
|P (t)|

√
Q(t) dt

where P(t) and Q(t) are polynomials and where the degree of Q is either 2
or 0.

2 Straight line segments

For linear line segments, A(t) and B(t) are constants and the integral is
trivial: the length of a line segment is a constant multiplied by t2 − t1, with
positive values indicating that the path parameter is increasing and negative
values indicating that the path parameter is decreasing.

3 Quadratic line segments

For quadratic line segments, A(t) and B(t) are constants or first degree poly-
nomials. If A(t) and B(t) have a common root, the integrand is the absolute
value of a polynomial. Otherwise, the integral can be written as

d(t1, t2) =
∫ t2

t=t1

√
a+ bt+ ct2 dt

That integral can be found in the CRC Standard Mathematical Tables, which
states that it is

d(t1, t2) =
(2ct+ b)

√
X

4c

∣∣∣∣∣
t2

t=t1

+
1

2k

∫ t2

t=t1

1√
X
dt

where q = 4ac− b2, k = 4c
q
and X = a+ bt+ ct2 In addition,

∫ t2
t=t1

1√
X
dt has

different values for
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� c > 0, in which case∫ dt√
X

=
1√
c
log(

√
X + t

√
c+

b

2/sqrtc
)

� c > 0 and q < 0, in which case

∫ dt√
X

=
1√
c
sinh−1

(
2ct+ b√
4ac− b2

)

� c < 0, in which case

∫ dt√
X

=
1√
−c

sin−1

(
−2ct− b√
b2 − 4ac

)

For d(t1, t2), there are a few special cases. If q = 0, the integral reduces to
the integral of the absolute value of a first degree polynomial and that is a
good approximation when q is very close to zero as well. Also, when |c| is
sufficiently small, one can change the integral to

d(t1, t2) =
∫ t2

t=t1

√
a+ bt

√
1 +

ct2

a+ bt
dt

≈
∫ t2

t=t1

[√
a+ bt+

ct2

2
√
a+ bt

]
dt

and both terms in the approximate value have integrals in the CRC Standard
Mathematical Tables:∫ √

a+ bt dt =
2

3b

√
(a+ bt)3 (1)∫ t2√

a+ bt
dt =

3(8a2 − 4abt+ 3b2t2)

15b3

√
a+ bt (2)

For integrals containing absolute values of polynomials, it is necessary
to break the integral up into segments whose boundaries are the limits of
integration and the roots, with no segment including a root internally. Fi-
nally, when the integral uses logarithms, it is possible for a + bt + ct2 to be
positive for t ∈ [t1, t2] and the argument for the logarithm to be negative.
For this case use log x = log(−x) + iπ for x < 0. While the integral is a
complex number, the imaginary part is a constant and thus drops out of
definite integrals.
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4 Cubic line segments

For cubic line segments, A(t) and B(t) could be constants or first degree
polynomials, but are typically second degree polynomials If A(t) and B(t)
have a common root, the integrand is the square root of a constant or a second
degree polynomial Q(t), multiplied by the absolute value of a polynomial
P (t). There are three cases:

1. if A(t) and B(t) share one common root, P (t) is a first degree polyno-
mial and Q(t) is a second degree polynomial

2. if A(t) and B(t) share two roots or both have the same double root,
then P (t) is a second-degree polynomial and Q(t) is a constant.

3. If there are no roots in common, Q(t) = A(t)2+B(t)2 is a fourth degree
polynomial with no real roots, and can be factored into two polynomials
Q1(t) and (Q2(t) that have no real roots and that have positive values
for all values of t.

Cases 1 and 2 involve integrals that are listed in the CRC Standard Math-
ematical Tables, and use elementary functions. While each has several cases,
these are similar to the ones outlines in Section 3. One additional integral is
useful: ∫

x
√
X dt =

X
√
X

3c
− b

2c

∫ √
X dt

where X = a + bt + ct2. This integral can be used for the case where A(t)
and B(t) have on common root, in which case the integral is that for the
absolute value of a first degree polynomial multiplied by the square root of
a quadratic polynomial.

The third case, which requires integrating the square root of a quartic
polynomial, uses elliptic integrals. If Q1(t) and Q2(t) are written as

Q1(t) = f1 + g1t+ h1t
2

Q2(t) = f2 + g2t+ h2t
2,

the integral can be found in paper by B. Carlson, A Table of Elliptic Integrals:
Two Quadratic Factors.1 Equation 2.45 on Page 169 of Carlson’s paper,

1B.C. Carlson, ”A Table of Elliptic Integrals: Two Quadratic Factors,” Math-
ematics of Computation, Volume 59, Number 199, July 1992, Pages 165–180.
<https://www.ams.org/journals/mcom/1992-59-199/S0025-5718-1992-1134720-4/S0025-
5718-1992-1134720-4.pdf>
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labeled as [1, 1, 1, 1], contains this integral, and makes use of a number of
variables Carlson defined before Equation 2.45. One obtains∫ x

t=y

√
Q1(t)Q2(t) dt = (δ222/h

2
2 − δ211/h

2
1)[ψ0H0 + (∆0 − δ212)Rf ]/8

− (3ψ2
0 − 4h1h2δ

2
12)(Σ + δ212Rf )/(24h

2
1h

2
2)

+ [∆2Rf − ψ0A(1, 1, 1, 1)]/(12h1h2) + E/(3h1)

where the quantities in this integral are defined below. In the following list
of definitions, i has each of two values (1 and 2) and the functions RF , RJ ,
RC , and RD are the Carlson symmetric forms of elliptic integrals:

H0 = δ211ψ0[RJ(M
2, L2

−, L
2
+,Ω

2
0)/3 +RC(a

2
0, b

2
0)/2]/h

2
1

−X0RC(T
2
0 , V

2
0 )

a20 = b20 + Λ0(Λ+ − Λ0)(Λ0 − Λ−)

b20 = (S2/U2 + Λ0)Ω
4
0

V 2
0 = µ2

0(S
2 + Λ0U

2)

T0 = µ0S + 2h1h2

µ0 = h1/(ξ1η1)

X0 = −(ξ′1ξ2 + η′1η2)/(x− y)

Ω2
0 = M2 + Λ0

Λ0 = δ211h2/h1

ψ0 = g1h2 − g2h1

A(1, 1, 1, 1) = ξ1ξ2 − η1η2

S = (ξ1η1θ2 + ξ2η2θ1)/(x− y)2

Σ = G−∆+Rf +B

Rf = RF (M
2, L2

−, L
2
+)

G = 2∆∆+RD(M
2, L2

−, L
2
+)/3 + ∆/(2U)

(δ212θ1 − δ211θ2)/(4ξ1η1U)

L2
± = M2 +∆±

∆± = δ212 ±∆

∆ = (δ412 − δ211δ
2
22)

1/2

δij = (2fihj + 2fjhi − gigj)
(1/2)

M = ζ1ζ2/(x− y)

U = (ξ1η2 + η1ξ2)/(x− y)

ζi = [(ξi + ηi)
2 − hi(x− y)2](1/2)
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θi = ξ2i + η2i − hi(x− y)2

E = ξ′1ξ
2
1ξ2 − η′1η

2
1η2

B = ξ′1ξ2 − η′1η2

η′1 = (g1 + 2h1y)/(2η1)

ξ′1 = (g1 + 2h1x)/(2ξ1)

ηi = (fi + giy + hiy
2)1/2

ξi = (fi + gix+ hix
2)1/2

Programs that define these variables should place them in the reverse order:
the list uses the convention in which quantities are used before they are
defined, the opposite of that used by Carlson.

An algorithm for factoring Q(t) is described in the article Factoring Quar-
tic Polynomials: A Lost Art.2 The easiest way to proceed is to factor Q(t)
into three terms: a constant, and two quadratic polynomials whose t2 coef-
ficients are 1.0. There are two special cases.

1. the minimum value of at least one of the two factors is small (e.g.,
less than 1 × 10−4). In this case, tests indicate that numerical accu-
racy is poor, and one should use some other method such as numeric
integration.

2. the two factors are identical. In this case, the integrand is the absolute
value of a quadratic polynomial. For this case, the integral given in
Carlson’s paper can fail: a Java implementation returned Double.NaN,
most likely because of division by zero, which suggests that Carlson’s
integral may not be numerically accurate when the two factors are
nearly, but not exactly identical.

When the two factors are nearly identical (for example, when the coefficients
differ by less than 10−7), one can write

√
Q1(t)Q2(t) = Q1(t)

√√√√Q2(t)

Q1(t)
= Q1(t)

√√√√1 +
Q2(t)

Q1(t)
− 1

≈ Q1(t)

[
1 +

1

2
(
Q2(t)

Q1(t)
− 1)

]
=
Q1(t) +Q2(t)

2

and the integral can be approximated by the integral of a polynomial.
2Gary Brookfield, ”Factoring Quartic Polynomials: A Lost Art”, Factoring Quartic

Polynomials: A Lost Art¡/A¿”, Mathematics Magazine, Vol. 80, No. 1, February 2007,
Pages 67–70, https://www.maa.org/sites/default/files/Brookfield2007-103574.pdf
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